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Viscous dissipation in external natural convection flows 

By B. GEBHART AND J .  MOLLENDORF 
Cornell University, Ithaca, New York 

(Received 23 September 1968 and in revised form 19 March 1969) 

The effects of viscous dissipation are considered for external natural convection 
flow over a surface. A class of similar boundary-layer solutions is given and 
numerical results are presented for a wide range of the dissipation and Prandtl 
numbers. Several general aspects of similarity conditions for flow over surfaces 
and in convection plumes are discussed and their special characteristics con- 
sidered. The general equations including the dissipation effect are given for the 
non-similar power law surface condition. 

Introduction 
Many natural convection processes encountered are not sufficiently vigorous 

to result in a viscous dissipation effect (i.e. a thermalization of energy through 
the mechanism of viscous stresses) which is appreciable compared to other 
energy flows in the convection region. However, it  is clear (see Gebhart 1962) 
that in natural convection flow fields of extreme size, or extremely low tempera- 
tures, or in high gravity the viscous generation of heat will affect the flow. 
In that paper external boundary-layer flow over a vertical flat surface was 
considered. The dissipation effect is non-similar for the most common boundary 
conditions and a dissipation parameter, ~ ( x )  = gbx/c,,t arose in a perturbation 
analysis of the uniform temperature and the uniform heat flux surface conditions. 
The effect was calculated for a Prandtl number (cr) range from to lo4, and 
was found to increase over that range. 

Other studies of this effect and the application of external two-dimensional 
flow results to internal flows are discussed in Gebhart (1962). Since that time 
one other study has come to the writers’ attention. Apparently Roy (1968, 
personal communication) has found an asymptotic solution for large Prandtl 
number for external flow on an isothermal surface, using a double boundary-layer 
concept. 

The present paper shows that a similarity solution exists for the external flow 
case over an infinite flat vertical surface, in an extensive medium at uniform 
temperature t ,  having an exponential variation of surface temperature to, i.e. 
to - t ,  = Memx. This similarity means that one may calculate the convection field, 
to the accuracy of the conventional boundary-layer equations, in terms of two 
parameters, the Prandtl number r~ and a dissipation parameter qP/rnc,, where 
l / m  is 6he e-folding distance. The results of numerical calculations are presented 

t g is gravity, pis the volumetric coefficient of thermal expansion, z is the distance from 
the leading edge of an infinite vertical surface, and cg is the applicable specific heat. 
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for a wide range of these parameters. The special characteristics and peculiar 
features of the convection field implied by an exponential variation are con- 
sidered in appendix A. 

Analysis 
The general equations of fluid motion for two-dimensional flow in Cartesian 

co-ordinates may be reduced to the simpler boundary-region form, as found in the 
experimental observations of Schmidt & Beclrmann (1930) and as indicated by 
an order of magnitude analysis. The first-order treatment of variable density, 
the Boussinesq approximation, is to include the effect only in the body-force- 
pressure-gradient terms and as ths first term of an expansion around p,. The 
equations for steady flow over an infinitely wide flat surface, parallel to the body 
force, with uniform fluid kinematic viscosity v and thermal conductivity k 
and including viscous dissipation, are: 

v.w = 0, ( 1 )  
au au a2u 

ax ay u-+w- = gP(t-t,)+v- a p  

obtain 

where for to > t,, x is measured positive upward. 
The retention of the viscous dissipation term in ( 5 )  is not justified for a gas if 

the pressure term and the pressure effect on density are omitted. Therefore, this 
analysis applies to liquids and cp  is the appropriate specific heat. 

Assuming a similarity variable and a stream function of the form: 

The last term in (10) is the viscous dissipation effect. It is well known that when 
this term is neglected, similarity solutions exist for a power law [d(x)  = Nx”] 
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and for exponential [d(x) = Memx] surface (at y = 0) temperature distributions. 
The equations, in this form, are as follows: 

(11) 
f”’+ 4 + (m+ 3)ff” - ( 2 M +  2) (f’), = 0, 

Power law : 

gYr -+ a[(n + 3 ) f @  - 4Mf’$] = 0, 

Exponential: 

d(x) = NX“, 

C ( X )  = 4 [ ~ , 1 t ,  

b(x) = 1/x[tGr,l4 

f” + 4 + ff” - 2(f’)2 = 0,  

yr+a(f(b’-4f’$q = 0, 

Gr, = g/3x3Nxn/vz. 

d(x) = Mern, 
c(x) = 4[)Grm]k, 

b(x) = m[tGrm]~,  

Gr, = g/3Memx/m3v2. 

Therefore, when viscous dissipation is neglected, f and 4 are functions of 7, c, 
and the exponent n for the power law case, and are functions of 7;1 and a for the 
exponential case. 

To find physically meaningful values of n and m for these cases we consider 
the local heat flux from the surface. For the flat surface the heat flux is given by 

q ” ( 4  = - k at 1 = k[ - 4’ (0 ) ]  b(z) d(x),  aY l l = o  

where heat flow in the direction of increasing y, i.e. to the fluid, is taken to be 
positive. 

The proper b(x) and d(x) give the following heat flux for the power law and for 
the exponential cases, respectively. 

p”(x) = Kzmke$mz, (17) 
where K ,  and K ,  are positive constants for to > t,. The total heat transfer from 
zero to x per unit width, is given by 

q(x) = q”(x)dx. (18) so” 
For the power law case (for n $: -+) and for the exponential case respectively, 

(19) 

(20) 

4 
p(x) = K ,  (-) ~ 4 ( 5 n + ~ ) ,  

p(x) = $K2m-g[e%m” - 11. 
7-2 
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Since q ( x )  must be positive it follows that 
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n > -2, 
m > 0. 

For to < t ,  the same conclusion is reached. 
Further, we will examine conditions necessary for meaningful values of m and 

n for another common geometry. For the case of a plume above a uniform line 
heat source, or over any plane heat source, the energy in the plume a distance x 
above its source, or at  the plate's beginning, per unit width is: 

Again, introducing the proper c ( x )  and d(x) ,  the plume energy content, for the 
power law and the exponential plume mid-plane temperature variation ( to)  are: 

From (24) it  is seen that, for the power law case, n = - + describes a line source, 
i.e. no x dependence of q ( x ) .  The n = -.$ is not an important case for flow over 
a surface, the result is an infinite energy flux in the vicinity of the leading edge 
with the rest of the surface adiabatic. 

Equation ( 2 5 )  shows that the exponential case cannot describe a plume arising 
entirely from a line source because q ( x )  is variable with x for all non-zero values 
of m. 

Hence, realistic local heat flux requires 

(26) 

m > 0, (27) 

(28) 

n >  - 3  
5, 

n =  - 3  for a flat plate, and 5 

for a uniform line heat source. 
When the effect of viscous dissipation is included, similarity is spoiled for the 

power law case by an x dependence of the coefficient of the viscous dissipation 

term in (10): u2e2b2 g@x 
-- - 4- = 4815). 
CPd CP 

This is the perturbation parameter used by Gebhart (1962). 

129) 

For the exponential case 

and we have similarity with this new, additional parameter. 

have the following equations: 
Hence for the exponential case, including the effect of viscous dissipation, we 

f"+$+ff"-2(f')2= 0,) 
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Note that m now appears and f and q5 are now functions of 7, u, and a viscous 
dissipation parameter, 4g/3/mcp. This new parameter is proportional to the kinetic 
energy of the flow divided by the heat transferred to the fluid, and is similar to 
the dissipation parameter, ~(x), found in the perturbation analysis for the power 
law case. The e-folding parameter l/m replaces x found in that analysis. 
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FIGURE 1. Non-dissipative velocity and temperature distributions for various 
Prandtl numbers. (a)  Temperature distribution. (b )  Velocity distribution. 

The resulting equations from the previous perturbation analysis have been 
solved for various Prandtl numbers for both the isothermal and the uniform 
flux surface boundary conditions. In  appendix B the equations are presented for 
any surface power law temperature distribution. Note that n = 0, and n = $ 
correspond to isothermal and uniform flux surfaces, respectively; and that 
n = - 

Equations (31) were numerically integrated for the vertical surface case, with 
the boundary conditions 

corresponds to a plume rising from a uniform line source. 

at q = O :  f = O ,  f ' = O ,  $ =  
as v+co: f + O ,  $ + O ,  

for Prandtl numbers of 0.72, 1, 10 and 100, and for a range of the dissipation 
parameter, 4g/3/mcP from 0 + 2.0, for each Prandtl number. Calculation con- 
sisted of a shooting method, using a predictor-corrector to integrate, and the 
technique described by Nachtsheim & Swigert (1965) to correct the first choices of 
initial values. Our results for negligible dissipation agree with those of Sparrow 
& Gregg (1958) for the two Prandtl number values they considered. 

Velocity and temperature distributions are shown in figure 1 for a zero dis- 
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sipation effect, for the various Prandtl numbers. Heat transfer, q"(x), and local 
Nusselt numbers are known from the $ distribution as follows: 

q"(x) = - k at 1 = k( t ,  - t ,) b (x )  [ - $'(O)], 
@,l2/=0 

Gr _ - - -  -__ - 

t,-t,  k k 

Prandtl number 
FIGURE 2. Heat transfer and drag parameters in the absence of 

a viscous dissipation effect. 

f 

f 
FIGURE 3. Effect of viscous dissipation on the velocity and temperature 

profiles for (T = 100. 
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The viscous stress r ( x )  and local drag coeficient Cd(z), defined on a ‘convection 
velocity’ U, = vc(z) b(x)f&,, cc vc(x) b(x), are known fromf(7). 

au 
r ( x )  = y - = yvc(x) b2(x)f”(0) = 4yvm2f”(0) (&Grm)a, 

au 

The two transport parameters, Nu, and Cd(x) depend on Prandtl number through 
#’(O) andf”(0). These values are plotted in figure 2 for 4g,O/mc, = 0. 
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FIGURE 4. Effect of viscous dissipation on heat transfer and viscous drag. 

Average transport parameters, N u  = hL/k and 6, = D/pLU:,,where h is the 
average heat flux divided by the average temperature difference At and D is the 
integral of r ( x )  over the interval x = 0 to L, are: 

where Gr, = g,OL3&/v2. 
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The effect of viscous dissipation as a distributed energy source in the convection 
region is shown in figure 3. Velocity and temperature distributions are both 
shown, for a Prandtl number of 100, for 4gPlmcp of zero and 2.0. The effect is 
an increase in convection velocity and a reduction of temperature gradient at  the 
surface, and therefore, in heat transfer rate, as 4gPlrnc, increases. 

These effects are more clearly seen in figure 4, where the heat transfer and drag 
parameters $’(O) andf”(0) are shown for various Prandtl numbers over a range 
of 4g/3/mc,. The values are normalized by their respective values at  zero level of 
viscous dissipation, denoted as $’(O), andf”(O),. The effect on heat transfer is seen 
to be proportionately much greater than that on drag. The effect increases with 
Prandtl number and may be much larger for the much higher values associated 
with even more viscous liquid. Calculated numerical values of these parameters 
are tabulated. 

r - -  

0- 0.0 0.5 1.0 1.5 
1 

2.0 

0.72 0.74114, 0.63414 0.71040, 0.63734 0.67894, 0.64060 0.64673, 0.64392 0.61376, 0.64729 
1.0 0.82354, 0.60208 0.78736, 0.60557 0.75019, 0.60912 0.71201, 0.61274 0.67279, 0.61644 

10-0 1.61719, 0.38853 1.52368, 0.39256 1.42552, 0.39675 1.32239, 0.40111 1.21391, 0.40564 
100 2.980, 0.231 2.786, 0.234 2.579, 0.237 2.360, 0.240 2.126, 0.244 

TABLE 1. Heat transfer and drag parameters, d’(O), f”(0) 

Conclusions 
The foregoing results are the first exact calculation of the viscous dissipation 

effect in a multi-dimensional natural convection flow. This similarity case makes 
the effect clear and will permit its calculation even for processes in which 
dissipation is the dominant process. 

It is true for these results, as for those published earlier, that these effects will 
be important only in what are now considered quite extreme physical processes. 
However, moderate acceleration, i.e. conditions of say 104g, may cause a 20 yo 
reduction in heat transfer in gases and in common liquids. Higher Prandtl 
number fluids show a much higher effect in terms of 4gP/mcp and the results 
for much higher values of cr would be interesting. The double boundary-layer idea 
should again be applicable and an asymptotic behaviour (in cr) should be 
found. 

It is emphasized that appreciable viscous dissipation effects do not preclude 
laminar flow. Stability and transition are in terms of Grashof number limits. 
The dissipation parameter is entirely independent of Grashof number. However, 
the viscous dissipation energy source results in an additional term in the stability 
equations. Its effect is now unknown. 

The results shown in figure 4 extend to 4gP/mc, = 2.0. The behaviour of the 
heat transfer parameter - #’(O) beyond this limit would be very interesting. By 
a value of perhaps 10 the dissipation effect should dominate the other physical 
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effects. The curves go sharply towards zero, do they approach different non-zero 
asymptotes? 

The writers wish to acknowledge the support by the National Science Founda- 
tion under Research Grant GK 1963 for this research. 

Appendix A 
The exponential boundary conditions result in similar solutions of boundary- 

layer equations in many flow circumstances. However, it is necessary to be con- 
cerned about physical implications and characteristics. There are particular 
peculiarities of the exponential surface temperature variation in natural con- 
vection. These imply limitations of the permissible interpretation and applica- 
bility of the results. 

Such analysis, as the foregoing, proceeds as though flow is considered over 
a flat surface a t  y = 0 extending from x = 0 to infinity. The boundary region 
thickness y = 6 (at rs) is as follows: 

for the power law and exponential case respectively. It is seen that for all per- 
missible power law cases (n > - 0-6) for a flat surface 6 goes to zero at x = 0 for 
n < 1.  Therefore, no momentum or energy flows on to the surface at the leading 
edge for such cases. However, all exponential cases have a non-zero value of 
6 at x = 0, there is no singularity. Since the similarity solution applies at x = 0, 
a non-zero momentum M and energy flow Q are implied at  the leading edge. This 
is a common problem in the application of boundary-layer theory and, in this 
case, causes a fundamental inaccuracy in the use of these results for a plate lying 
a tx  2 0. 

The inaccuracy is estimated here by finding for what length of the plate (to 
x = L) the leading edge contribution of M and Q is important, compared to the 
local values. The Jk and Q at  any x are 
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The ratio of the values of .ik and Q at x = L to their values at the leading edge are 

. i k ( ~ ) / . i k ( ~ )  = ebmL, 

Q(L)/&(o) = e%mL. 

Clearly the similarity solution is reasonable for the portion of the surface from 
x = 0 to L only if these are large quantities, i.e. if mL is considerably larger than 1. 

Another way of interpreting this leading edge flow is as though x = 0 is located 
on a doubly infinite surface ( - 00 to + 00) with a surface temperature Mems. Since 
G is positive this is an exponential growth for x > 0 and decay for x < 0. The 
leading edge convection (at x = 0) calculated above is the convection produced 
over the whole of the surface from - 00 to 0. The applicability of the similarity 
solution to  a surface lying only above x = 0 depends upon whether the total 
contribution from -00 to 0 is negligible compared to that between 0 and L. 
Clearly large m, fast decay, and large L are the conditions. 

Appendix B 
It was shown earlier that there is no similarity for the power law case when 

viscous dissipation is included. The x dependence appearing in the viscous dis- 
sipation term suggests a perturbation about the non-dissipation flow. This was 
done by Gebhart (1962) for various Prandtl numbers, for the isothermal and uni- 
form flux boundary conditions. The analysis is given here for any power law 
surface temperature distribution. 

Assuming a similarity variable and stream function of the form 

r = Yb(XL 

@(x, Y) = 4%) [fo(a) +Wfl(?l) +c2(x)f2(r) + **.I, 
$h Y) = $o(r) +w 91b) +E2M $ 2 ( r )  + - . - *  and 

The functions b(x) and c(x) are chosen corresponding to the power law case, 
equation (1  1). The zeroth-order terms in e are to be the non-dissipation similarity 
solution. This occurs if e is chosen as 

For fo and $owe have 
f{ + $o + (n + 3)f0f; - (2n + 2) (fi)2 = 0, 

4;; + c[(n + 3)foqj; - 472f6#0] = 0. 

The equations from first-order terms in 8, i.e. for fl and dl, are 

f:’ + ( 7  + n)f;fl + (3 + n)fof;l - (8 + 4 n ) f ;  f i + $1 = 0, 

$I+~[(r-n) f ld~+(3+~)fo$l -4(1+n)f6$l -44 , f i$o+(f ,”)2~= 0. 

Additional equations may be written for higher-order terms; they amount to two 
coupled relations at  each level. 
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